102 research outputs found

    Urinary MicroRNA Profiling in the Nephropathy of Type 1 Diabetes

    Get PDF
    Background: Patients with Type 1 Diabetes (T1D) are particularly vulnerable to development of Diabetic nephropathy (DN) leading to End Stage Renal Disease. Hence a better understanding of the factors affecting kidney disease progression in T1D is urgently needed. In recent years microRNAs have emerged as important post-transcriptional regulators of gene expression in many different health conditions. We hypothesized that urinary microRNA profile of patients will differ in the different stages of diabetic renal disease. Methods and Findings: We studied urine microRNA profiles with qPCR in 40 T1D with >20 year follow up 10 who never developed renal disease (N) matched against 10 patients who went on to develop overt nephropathy (DN), 10 patients with intermittent microalbuminuria (IMA) matched against 10 patients with persistent (PMA) microalbuminuria. A Bayesian procedure was used to normalize and convert raw signals to expression ratios. We applied formal statistical techniques to translate fold changes to profiles of microRNA targets which were then used to make inferences about biological pathways in the Gene Ontology and REACTOME structured vocabularies. A total of 27 microRNAs were found to be present at significantly different levels in different stages of untreated nephropathy. These microRNAs mapped to overlapping pathways pertaining to growth factor signaling and renal fibrosis known to be targeted in diabetic kidney disease. Conclusions: Urinary microRNA profiles differ across the different stages of diabetic nephropathy. Previous work using experimental, clinical chemistry or biopsy samples has demonstrated differential expression of many of these microRNAs in a variety of chronic renal conditions and diabetes. Combining expression ratios of microRNAs with formal inferences about their predicted mRNA targets and associated biological pathways may yield useful markers for early diagnosis and risk stratification of DN in T1D by inferring the alteration of renal molecular processes. Β© 2013 Argyropoulos et al

    Triterpenoid modulation of IL-17 and Nrf-2 expression ameliorates neuroinflammation and promotes remyelination in autoimmune encephalomyelitis

    Get PDF
    Inflammatory cytokines and endogenous anti-oxidants are variables affecting disease progression in multiple sclerosis (MS). Here we demonstrate the dual capacity of triterpenoids to simultaneously repress production of IL-17 and other pro-inflammatory mediators while exerting neuroprotective effects directly through Nrf2-dependent induction of anti-oxidant genes. Derivatives of the natural triterpene oleanolic acid, namely CDDO-trifluoroethyl-amide (CDDO-TFEA), completely suppressed disease in a murine model of MS, experimental autoimmune encephalomyelitis (EAE), by inhibiting Th1 and Th17 mRNA and cytokine production. Encephalitogenic T cells recovered from treated mice were hypo-responsive to myelin antigen and failed to adoptively transfer the disease. Microarray analyses showed significant suppression of pro-inflammatory transcripts with concomitant induction of anti-inflammatory genes including Ptgds and Hsd11b1. Finally, triterpenoids induced oligodendrocyte maturation in vitro and enhanced myelin repair in an LPC-induced non-inflammatory model of demyelination in vivo. These results demonstrate the unique potential of triterpenoid derivatives for the treatment of neuroinflammatory disorders such as MS

    Geldanamycin Derivative Ameliorates High Fat Diet-Induced Renal Failure in Diabetes

    Get PDF
    Diabetic nephropathy is a serious complication of longstanding diabetes and its pathogenesis remains unclear. Oxidative stress may play a critical role in the pathogenesis and progression of diabetic nephropathy. Our previous studies have demonstrated that polyunsaturated fatty acids (PUFA) induce peroxynitrite generation in primary human kidney mesangial cells and heat shock protein 90Ξ²1 (hsp90Ξ²1) is indispensable for the PUFA action. Here we investigated the effects of high fat diet (HFD) on kidney function and structure of db/db mice, a widely used rodent model of type 2 diabetes. Our results indicated that HFD dramatically increased the 24 h-urine output and worsened albuminuria in db/db mice. Discontinuation of HFD reversed the exacerbated albuminuria but not the increased urine output. Prolonged HFD feeding resulted in early death of db/db mice, which was associated with oliguria and anuria. Treatment with the geldanamycin derivative, 17-(dimethylaminoehtylamino)-17-demethoxygeldanamycin (17-DMAG), an hsp90 inhibitor, preserved kidney function, and ameliorated glomerular and tubular damage by HFD. 17-DMAG also significantly extended survival of the animals and protected them from the high mortality associated with renal failure. The benefit effect of 17-DMAG on renal function and structure was associated with a decreased level of kidney nitrotyrosine and a diminished kidney mitochondrial Ca2+ efflux in HFD-fed db/db mice. These results suggest that hsp90Ξ²1 is a potential target for the treatment of nephropathy and renal failure in diabetes

    Altered Error Processing following Vascular Thalamic Damage: Evidence from an Antisaccade Task

    Get PDF
    Event-related potentials (ERP) research has identified a negative deflection within about 100 to 150 ms after an erroneous response – the error-related negativity (ERN) - as a correlate of awareness-independent error processing. The short latency suggests an internal error monitoring system acting rapidly based on central information such as an efference copy signal. Studies on monkeys and humans have identified the thalamus as an important relay station for efference copy signals of ongoing saccades. The present study investigated error processing on an antisaccade task with ERPs in six patients with focal vascular damage to the thalamus and 28 control subjects. ERN amplitudes were significantly reduced in the patients, with the strongest ERN attenuation being observed in two patients with right mediodorsal and ventrolateral and bilateral ventrolateral damage, respectively. Although the number of errors was significantly higher in the thalamic lesion patients, the degree of ERN attenuation did not correlate with the error rate in the patients. The present data underline the role of the thalamus for the online monitoring of saccadic eye movements, albeit not providing unequivocal evidence in favour of an exclusive role of a particular thalamic site being involved in performance monitoring. By relaying saccade-related efference copy signals, the thalamus appears to enable fast error processing. Furthermore early error processing based on internal information may contribute to error awareness which was reduced in the patients

    Modulation of endogenous antioxidant defense and the progression of kidney disease in multi-heritage groups of patients with type 2 diabetes: PRospective EValuation of Early Nephropathy and its Treatment (PREVENT).

    Get PDF
    BACKGROUND: Diabetes is the western world's leading cause of end-stage renal disease. Glucose-dependent, oxidative stress is linked to the development of renal inflammation and sclerosis, which, in animal models of diabetes, can be prevented by anti-oxidative treatment. Patients of non-Caucasian heritage have low activity of the selenoprotein, antioxidant enzyme, glutathione peroxidase (GPx) and its co-factor vitamin E, which may be linked to their increased propensity to developing end-stage renal disease. RESEARCH DESIGN AND METHODS: We have designed a double-blind, randomized, placebo controlled study with selenium and/or vitamin E versus placebo as the interventions for patients with type 2 diabetes and chronic kidney disease (CKD) stages 1-3. A 2Β Γ—Β 2 factorial design will allow a balanced representation of the heritage groups exposed to each intervention. The primary biochemical outcome is change in GPx activity, and clinical outcome measure is the actual, rate of-and/or percentage change in estimated glomerular filtration rate (eGFR) from baseline. Analysis will be with a marginal model for longitudinal data using Generalized Estimating Equations corrected for measures of baseline serum antioxidant enzyme activities (GPx, superoxide dismutase and catalase), micronutrient levels (vitamins E and C), measures of inflammation (interleukin 6, c-reactive protein and monocyte chemoattractant protein-1) and markers of oxidative damage (plasma 8-isoprostaglandin F2Ξ± and urinary 8-hydroxydeoxyguanosine). EXPECTED RESULTS: The study will assess the relationship between GPx activity, oxidative stress, inflammation and eGFR. It will test the null hypothesis that antioxidant therapy does not influence the activity of GPx or other antioxidant enzymes and/or alter the rate of change in eGFR in these patient groups. CONCLUSIONS: Outcome data on the effect of antioxidants in human diabetic renal disease is limited. Previous post hoc analyses have not shown a beneficial effect of vitamin E on renal function. A recent trial of a pharmaceutical antioxidant agent, improved eGFR, but in patients with advanced diabetes-related chronic kidney disease its use was associated with an increased incidence of cardiovascular events. We will explore whether the nutritional antioxidants, vitamin E and selenium alone, or in combination in patients at high risk of renal disease progression, forestalls a reduction in eGFR. The study will describe whether endogenous antioxidant enzyme defenses can be safely modified by this intervention and how this is associated with changes in markers of oxidative stress. Trial registration ISRCTN 97358113. Registered 21st September 2009

    Cold-induced vasoconstriction at forearm and hand skin sites: the effect of age

    Get PDF
    During mild cold exposure, elderly are at risk of hypothermia. In humans, glabrous skin at the hands is well adapted as a heat exchanger. Evidence exists that elderly show equal vasoconstriction due to local cooling at the ventral forearm, yet no age effects on vasoconstriction at hand skin have been studied. Here, we tested the hypotheses that at hand sites (a) elderly show equal vasoconstriction due to local cooling and (b) elderly show reduced response to noradrenergic stimuli. Skin perfusion and mean arterial pressure were measured in 16 young adults (Y: 18–28Β years) and 16 elderly (E: 68–78Β years). To study the effect of local vasoconstriction mechanisms local sympathetic nerve terminals were blocked by bretylium (BR). Baseline local skin temperature was clamped at 33Β°C. Next, local temperature was reduced to 24Β°C. After 15Β min of local cooling, noradrenalin (NA) was administered to study the effect of neural vasoconstriction mechanisms. No significant age effect was observed in vasoconstriction due to local cooling at BR sites. After NA, vasoconstriction at the forearm showed a significant age effect; however, no significant age effect was found at the hand sites. [Change in CVC (% from baseline): Forearm Y: βˆ’76Β Β±Β 3 vs. E: βˆ’60Β Β±Β 5 (PΒ <Β 0.01), dorsal hand Y: βˆ’74Β Β±Β 4 vs. E: βˆ’72Β Β±Β 4 (n.s.), ventral hand Y: βˆ’80Β Β±Β 7 vs. E: βˆ’70Β Β±Β 11 (n.s.)]. In conclusion, in contrast to results from the ventral forearm, elderly did not show a blunted response to local cooling and noradrenalin at hand skin sites. This indicates that at hand skin the noradrenergic mechanism of vasoconstriction is maintained with age

    Cys34-cysteinylated human serum albumin is a sensitive plasma marker in oxidative stress-related chronic diseases

    Get PDF
    The degree of oxidized cysteine (Cys) 34 in human serum albumin (HSA), as determined by high performance liquid chromatography (HPLC), is correlated with oxidative stress related pathological conditions. In order to further characterize the oxidation of Cys34-HSA at the molecular level and to develop a suitable analytical method for a rapid and sensitive clinical laboratory analysis, the use of electrospray ionization time-of-flight mass spectrometer (ESI-TOFMS) was evaluated. A marked increase in the cysteinylation of Cys34 occurs in chronic liver and kidney diseases and diabetes mellitus. A significant positive correlation was observed between the Cys-Cys34-HSA fraction of plasma samples obtained from 229 patients, as determined by ESI-TOFMS, and the degree of oxidized Cys34-HSA determined by HPLC. The Cys-Cys34-HSA fraction was significantly increased with the progression of liver cirrhosis, and was reduced by branched chain amino acids (BCAA) treatment. The changes in the Cys-Cys34-HSA fraction were significantly correlated with the alternations of the plasma levels of advanced oxidized protein products, an oxidative stress marker for proteins. The binding ability of endogenous substances (bilirubin and tryptophan) and drugs (warfarin and diazepam) to HSA purified from chronic liver disease patients were significantly suppressed but significantly improved by BCAA supplementation. Interestingly, the changes in this physiological function of HSA in chronic liver disease were correlated with the Cys-Cys34-HSA fraction. In conclusion, ESI-TOFMS is a suitable high throughput method for the rapid and sensitive quantification of Cys-Cys34-HSA in a large number of samples for evaluating oxidative stress related chronic disease progression or in response to a treatment

    Deficient Dopamine D2 Receptor Function Causes Renal Inflammation Independently of High Blood Pressure

    Get PDF
    Renal dopamine receptors participate in the regulation of blood pressure. Genetic factors, including polymorphisms of the dopamine D2 receptor gene (DRD2) are associated with essential hypertension, but the mechanisms of their contribution are incompletely understood. Mice lacking Drd2 (D2βˆ’/βˆ’) have elevated blood pressure, increased renal expression of inflammatory factors, and renal injury. We tested the hypothesis that decreased dopamine D2 receptor (D2R) function increases vulnerability to renal inflammation independently of blood pressure, is an immediate cause of renal injury, and contributes to the subsequent development of hypertension. In D2βˆ’/βˆ’ mice, treatment with apocynin normalized blood pressure and decreased oxidative stress, but did not affect the expression of inflammatory factors. In mouse RPTCs Drd2 silencing increased the expression of TNFΞ± and MCP-1, while treatment with a D2R agonist abolished the angiotensin II-induced increase in TNF-Ξ± and MCP-1. In uni-nephrectomized wild-type mice, selective Drd2 silencing by subcapsular infusion of Drd2 siRNA into the remaining kidney produced the same increase in renal cytokines/chemokines that occurs after Drd2 deletion, increased the expression of markers of renal injury, and increased blood pressure. Moreover, in mice with two intact kidneys, short-term Drd2 silencing in one kidney, leaving the other kidney undisturbed, induced inflammatory factors and markers of renal injury in the treated kidney without increasing blood pressure. Our results demonstrate that the impact of decreased D2R function on renal inflammation is a primary effect, not necessarily associated with enhanced oxidant activity, or blood pressure; renal damage is the cause, not the result, of hypertension. Deficient renal D2R function may be of clinical relevance since common polymorphisms of the human DRD2 gene result in decreased D2R expression and function
    • …
    corecore